skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "VanderWeide, Andrew I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cyclopentadienyl (Cp), a classic ancillary ligand platform, can be chemically noninnocent in electrocatalytic H−H bond formation reactions via protonation of coordinated η5-Cp ligands to form η4-CpH moieties. However, the kinetics of η5-Cp ring protonation, ligand-to-metal (or metal-to-ligand) proton transfer, and the influence of solvent during H2 production electrocatalysis remain poorly understood. We report in-depth kinetic details for electrocatalytic H2 production with Fe complexes containing amine-functionalized CpN3 ligands that are protonated via exogenous acid to generate via η4-CpN3H intermediates (CpN3 = 6-amino-1,4-dimethyl-5,7-diphenyl-2,3,4,6-tetrahydrocyclopenta[b]pyrazin-6-yl). Under reducing conditions, state-of-the-art DFT calculations reveal that a coordinated solvent plays a crucial role in mediating stereo- and regioselective proton transfer to generate (endo-CpN3H)Fe(CO)2(NCMe), with other protonation pathways being kinetically insurmountable. To demonstrate regioselective endo-CpN3H formation, the isoelectronic model complex (endo-CpN3H)Fe(CO)3 is independently prepared, and kinetic studies with the on-cycle hydride intermediate CpN3FeH(CO)2 under CO cleanly furnish the ring-activated complex (endo-CpN3H)Fe(CO)3 via metal-to-ligand proton migration. The on-cycle complex CpN3FeH(CO)2 reacts with acid to release H2 and regenerate [CpN3Fe(CO)2(NCMe)]+, which was found to be the TOF-determining step via DFT. Collectively, these experimental and computational results underscore the emerging importance of Cp ring activation, inner-sphere solvation, and metal−ligand cooperativity to perform proton-coupled electron transfer catalysis for chemical fuel synthesis. 
    more » « less
  2. Two bis-carbamoylmethylphosphine oxide compounds, namely {[(3-{[2-(diphenylphosphinoyl)ethanamido]methyl}benzyl)carbamoyl]methyl}diphenylphosphine oxide, C 36 H 34 N 2 O 4 P 2 , (I), and diethyl [({2-[2-(diethoxyphosphinoyl)ethanamido]ethyl}carbamoyl)methyl]phosphonate, C 14 H 30 N 2 O 8 P 2 , (II), were synthesized via nucleophilic acyl substitution reactions between an ester and a primary amine. Hydrogen-bonding interactions are present in both crystals, but these interactions are intramolecular in the case of compound (I) and intermolecular in compound (II). Intramolecular π–π stacking interactions are also present in the crystal of compound (I) with a centroid–centroid distance of 3.9479 (12) Å and a dihedral angle of 9.56 (12)°. Intermolecular C—H...π interactions [C...centroid distance of 3.622 (2) Å, C—H...centroid angle of 146°] give rise to supramolecular sheets that lie in the ab plane. Key geometric features for compound (I) involve a nearly planar, trans- amide group with a C—N—C—C torsion angle of 169.12 (17)°, and a torsion angle of −108.39 (15)° between the phosphine oxide phosphorus atom and the amide nitrogen atom. For compound (II), the electron density corresponding to the phosphoryl group was disordered, and was modeled as two parts with a 0.7387 (19):0.2613 (19) occupancy ratio. Compound (II) also boasts a trans -amide group that approaches planarity with a C—N—C—C torsion angle of −176.50 (16)°. The hydrogen bonds in this structure are intermolecular, with a D ... A distance of 2.883 (2) Å and a D —H... A angle of 175.0 (18)° between the amide hydrogen atom and the P=O oxygen atom. These non-covalent interactions create ribbons that run along the b -axis direction. 
    more » « less